In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri
نویسندگان
چکیده
In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology.
منابع مشابه
Assessment of the role of sutures in a lizard skull: a computer modelling study.
Sutures form an integral part of the functioning skull, but their role has long been debated among vertebrate morphologists and palaeontologists. Furthermore, the relationship between typical skull sutures, and those involved in cranial kinesis, is poorly understood. In a series of computational modelling studies, complex loading conditions obtained through multibody dynamics analysis were impo...
متن کاملEvidence of a functional role in lung inflation for the buccal pump in the agamid lizard, Uromastyx aegyptius microlepis.
This study has demonstrated that the agamid desert lizard Uromastyx aegyptius microlepis ventilates its lungs both with a triphasic, thoracic aspiratory pump and by gulping air, using a buccal pump. These two mechanisms never occur simultaneously because bouts of buccal pumping are always initiated after the passive expiration that terminates a thoracic breath. Lung inflation arising from thora...
متن کاملMorphology of the feeding system in agamid lizards: ecological correlates.
The interaction of organismal design with ecology, and its evolutionary development are the subject of many functional and ecomorphological studies. Many studies have shown that the morphology and mechanics of the masticatory apparatus in mammals are adapted to diet. To investigate the relations between diet and the morphological and physiological properties of the lizard jaw system, a detailed...
متن کاملThe importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of...
متن کاملRotational feeding in caecilians: putting a spin on the evolution of cranial design.
Caecilians are a poorly known group of amphibians with a highly derived skull and cranial musculature that has evolved in response to their specialized head-first burrowing lifestyle. They possess a unique jaw-closing system, which is shown to be capable of generating considerable bite forces for its head width (1.09+/-0.34 and 0.62+/-0.31 N for Schistometopum thomense and Boulengerula taitanus...
متن کامل